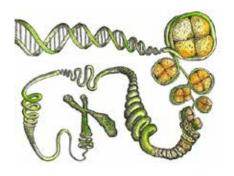



### Introduction to Epigenetics

Epigenetics involves changes in gene activity that are not directly caused by DNA sequence alterations. Instead, gene expression is activated or inhibited through regulatory changes such as chromatin remodeling, which can involve modifications of histone proteins or the addition of methyl or alkyl groups to nucleotides.


Methylation or acetylation of histones can have profound changes on the state of chromatin and its probability of transcription. Similarly, hypermethylation of DNA sequences in the promoter region of a gene can prevent transcription of the gene product. Targeting modifiers like deacetylases and methyltransferases shows potential for therapeutic benefit in the treatment of a variety of cancers.



# DNA Methyltransferase (DNMTs)

DNA methyltransferases (DN-MTs) predominantly methylate CpG nucleotide sequences on DNA. Three active DNA methyltransferases have been identified in mammals: DNMT1, DNMT3A, and DNMT3B. Typically, methylation of these sequences in promoter regions prevents expression of genes by physically preventing transcription factors from binding to DNA. Additionally, methylated DNA can be bound by methyl-CpGbinding domain proteins that recruit histone remodeling enzymes; these enzymes can condense chromatin structure, offering another mechanism for suppressing gene expression. In some cancers, this results in decreased expression of tumor suppressor genes and unregulated cell growth. Several compounds inhibit activity of DNA methyltransferase, including RG-108, mithramycin, and azacytidine.

| Cat #   |                                        |                                       |      |
|---------|----------------------------------------|---------------------------------------|------|
| A9602   | Azacitidine                            | Inhibits DNMT1/3A/3B                  | ≥98% |
| A9603   | 5-Aza-2'-deoxycytidine<br>(Decitabine) | Inhibits DNMT1/3A/3B                  | ≥98% |
| B3573   | Bisdemethoxycurcumin                   | Inhibits DNMT1                        | ≥98% |
| C2944   | Chlorogenic Acid                       | Inhibits DNMT                         | ≥98% |
| E6234   | Epigallocatechin Gallate               | Inhibits DNMT1                        | ≥98% |
| F3473   | Fisetin                                | Inhibits DNMT1                        | ≥97% |
| L5750   | Lomeguatrib                            | Inhibits O6-methylguanine-DNMT (MGMT) | ≥98% |
| M3476   | Mithramycin                            | Inhibits DNMT1                        | ≥98% |
| B1855   | O6-Benzylguanine                       | Inhibits O6-methylguanine-DNMT (MGMT) | ≥98% |
| R2400   | RG-108                                 | Inhibits DNMT                         | ≥98% |
| S3352   | Sinefungin                             | Inhibits DNMT                         | ≥95% |
| S5868   | Sorafenib                              | Inhibits DNMT activity                | ≥98% |
| T286163 | Theaflavin-3,3'-digallate              | Inhibits DNMT                         | ≥98% |



# Histone Methyltransferase Inhibitors

| Cat # |           |                |      |
|-------|-----------|----------------|------|
| E6396 | EPZ005687 | Inhibits EZH2  | ≥99% |
| E6398 | EPZ5676   | Inhibits DOT1L | ≥98% |
| E6397 | EPZ6438   | Inhibits EZH2  | ≥99% |
| G7340 | GSK126    | Inhibits EZH2  | ≥99% |
| G7442 | GSK343    | Inhibits EZH2  | ≥98% |
| S5868 | Sorafenib | Inhibits EZH2  | >98% |

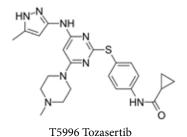
Histone methyltransferases transfer methyl groups to lysine and arginine residues of histones, particularly on histones H3 and H4. Methylation of histones makes them more neutral in charge, allowing them to separate slightly from DNA; this loose conformation makes the DNA more easily accessible. Histone methyltransferases can activate gene expression in this manner, as transcription of DNA sequences more loosely wrapped around methylated histones is more likely to occur. However, depending on the histone, this same process can also silence

gene transcription, as methylation may block the DNA binding and activation sites for some transcription factors or induce chromatin condensation. In some forms of cancer, methylation of histones by methyltransferases EZH2 or DOT1L silences expression of tumor suppressor genes. Inhibitors of histone methyltransferases such as EPZ5676, EPZ005687, and GSK126 exhibit anticancer chemotherapeutic activity across a variety of in vitro and in vivo cancer models.

G7340 GSK126

S5868 Sorafenib

# Histone Deacetylases (HDACs)


| Cat # |                        |                                                    |      |
|-------|------------------------|----------------------------------------------------|------|
| A4002 | AK-7                   | Inhibits SIRT2 (HDAC class III), brain penetrant   | ≥98% |
| A6132 | Apicidin               | Inhibits HDAC (broad spectrum, class I/II)         | ≥98% |
| B1746 | Belinostat             | Inhibits HDAC                                      | ≥98% |
| B8276 | Butyric Acid Sodium    | Inhibits HDAC                                      | ≥97% |
| C0048 | Cambinol               | Inhibits SIRT1 (HDAC class III)                    | ≥98% |
| C8069 | Curcumin               | Decreases expression of HDAC3 (class I)            | ≥98% |
| E5477 | Entinostat             | Inhibits HDAC1 (class I)                           | ≥98% |
| I7559 | Isoliquiritigenin      | Inhibits HDAC (class I/IIA)                        | ≥98% |
| L0528 | LBH-589                | Inhibits HDAC1/2/3/11 (class I)                    | ≥98% |
| M2409 | MGCD-0103              | Inhibits HDAC                                      | ≥98% |
| M9710 | Mycophenolic Acid      | Inhibits HDAC                                      | ≥98% |
| P2815 | Phenylbutyrate         | Inhibits HDAC                                      | ≥98% |
| R5749 | Romidepsin             | Inhibits HDAC                                      | ≥98% |
| S0344 | Salermide              | Inhibits SIRT1/2 (HDAC class III)                  | ≥98% |
| S3470 | Sirtinol               | Inhibits SIRT1/2 (HDAC class III)                  | ≥98% |
| S1069 | Scriptaid              | Inhibits HDAC (broad spectrum)                     | ≥98% |
| S5868 | Sorafenib              | Decreases expression of HDAC1/2/4/5/8 (classI/IIA) | ≥98% |
| T5060 | TMP-269                | Inhibits HDAC (class II)                           | ≥98% |
| T5996 | Tozasertib             | Decreases expression of HDAC                       | ≥98% |
| T6933 | Trichostatin A         | Inhibits HDAC1/3/4/6/10 (class I/IIA/IIB)          | ≥98% |
| T8000 | Tubacin                | Inhibits HDAC6/10 (class IIB)                      | ≥98% |
| T8006 | Tubastatin A HCl       | Inhibits HDAC6/10 (class IIb)                      | ≥98% |
| V0144 | n-Valeric Acid         | Inhibits HDAC                                      | ≥98% |
| V0147 | Valproic Acid Na+ Salt | Inhibits HDAC1 (class I)                           | ≥98% |
| V5734 | Vorinostat (SAHA)      | Inhibits HDAC1/2/3/6 (class I/IIB)                 | ≥98% |

Histone deacetylases (HDACs) are responsible for removing acetyl groups from N-acetyl lysine amino acids on histones, making them more positively charged and able to more tightly bind the negatively charged DNA backbone. As a result, DNA structure condenses and genetic transcription is less likely to occur. HDACs can prevent expression of genes important in apoptosis and tumor suppression. HDACs are subdivided into four separate groups based on their localization and function. Class I HDACs (isotypes 1, 2, 3, 8) are primarily found in the nucleus, whereas class II HDACs (isotypes 4, 5, 6, 7, 9, 10) are able to travel through the nuclear membrane and are found in both the nucleus and the cytoplasm. HDAC inhibitors exhibit anticancer activity when co-administered with other chemotherapeutics, particularly in the treatment of leukemias and lymphomas. HDAC inhibitors include vorinostat, trichostatin A, scriptaid, and phenylbutyrate.

#### Aurora Kinase

The aurora kinases are a family of proteins that regulate mitosis. Three kinases, Aurora A, Aurora B, and Aurora C, are each responsible for different functions involving chromatid segregation and other mechanisms of cellular division. They are overexpressed in a variety of cancers, making them interesting therapeutic targets for cancer research. Inhibition of each of the aurora kinases induces apoptosis through unique mechanisms. Aurora A inhibition disrupts mitotic spindle assembly, while Aurora B interferes with chromosome alignment. The role of Aurora C is less known as it is typically expressed in meiotic cells, however it has recently been shown to demonstrate oncogenic activity. Aurora A and B have thus been the focus of small molecule targeting to date.

| A9714 | AZD-1152-HQPA<br>(Barasertib) | Determined to be the most selective available AurB inhibitor in a 2015 study.                                       | ≥98% |
|-------|-------------------------------|---------------------------------------------------------------------------------------------------------------------|------|
| C9708 | CYC-116                       | Inhibits AurA and AurB. Induces apoptosis in multiple myeloma cells in combination with matrine.                    | ≥98% |
| G7444 | GSK-1070916                   | Inhibits AurB and AurC.                                                                                             | ≥98% |
| M4652 | MLN8237 (Alisertib)           | Selective AurA inhibitor. Effective in treating models of neruoblastoma, acute lymphoblastic leukemia, and sarcoma. | ≥98% |
| T5996 | VX680 (Tozasertib)            | AurA inhibitor with some AurB inhibitory effect.                                                                    | ≥98% |
| Z4900 | ZM-447439 Trihydrate          | Inhibits AurA and AurB. Limits migration of MCF-7                                                                   | ≥98% |



HO N

A9714 AZD-1152-HQPA

#### About Us



LKT Labs is focused on the production and distribution of high purity biochemicals for all types of life science research, including cancer biology, immunology, cardiovascular studies, microbiology, and neuroscience. Our product library includes a wide variety of compounds that can be used for a broad spectrum of in vitro and in vivo research applications.

**LKT Laboratories** 

545 Phalen Blvd. St. Paul, MN 55130

Biochemicals for Life Science Research | lktlabs.com